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Abstract 

Deep Learning is a vast field within computer science which has made tremendous 

progress in its application and abilities in the past decade. Some of the applications 

of deep learning include image recognition, language translation, neural audio 

effects, self-driving automobiles, and even cancer diagnosis. In this paper we will 

explore some of the foundational architectures of deep learning as well as their 

various applications. We will then go on to discuss our hands on experience with 

transfer learning using ResNet, an architecture for the task of image classification. 

1 Introduction 

Artificial Intelligence (AI) and Machine Learning (ML) have become modern 

buzzwords in the world of business and science, with ninety one percent of leading 

companies investing in AI on an on-going basis and one in twelve startups using 

some form of AI [1][2]. Some of the applications include online purchase 

recommendations, advertisements, fraud detection, autonomous driving cars, 

stream history-influenced video viewing recommendations, and orthopedic 

medicine [3]. With the vast array of applications of AI and ML, it’s easy to 

understand why such a high percentage of companies are interested in the 
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technology. In this paper we will explore some of the foundational architectures of 

deep learning as well as their various applications. We will then go on to discuss our 

hands on experience with transfer learning using ResNet architecture for the task 

of image classification. 

Machine Learning is a subset of Artificial Intelligence which is focused in 

experiential learning on large datasets which ideally allow a model to produce a 

correct or reasonable output given an input [3]. In the traditional paradigm of 

software engineering, a programmer would write a program, which could be 

thought of as a series of procedures or rules, which would solve a real-world 

problem. The logic of the program would be explicitly written in the code. Machine 

Learning is a complete flip of this paradigm. In machine learning we train models to 

learn mappings from inputs to outputs or features to targets respectively. Using a 

loss function to know how bad its prediction was, the model adapts during training 

and gradually gets better at this mapping [4]. As stated by Chollet, “Learning, in the 

context of machine learning, describes an automatic search process for data 

transformations that produce useful representations of some data, guided by some 

feedback signal—representations that are amenable to simpler rules solving the 

task at hand.”  

Deep Learning is a subset of Machine Learning which uses neural networks to 

perform this mapping from inputs to outputs.  The ‘deep’ in Deep Learning is a 

reference to the principal idea of using successive layers to create abstract 

representations from features of the input data. Depth, in this sense, refers to how 

many layers are contained within a model. To say one model has more depth than 
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another is not to say that it is more sophisticated, rather it just means that one 

model has more layers than another. In general, deep learning is a mathematical 

framework for learning and connecting representations of data [4]. 

1.1 A Brief History 

The idea of Artificial Intelligence (AI) was a pioneered by Alan Turing in his 

1950 paper, Computing Machinery and Intelligence [5]. Though AI was only 

presented as an idea in his paper, Turing laid some foundational thoughts that still 

impact how we think about AI, such as the Turing Test. AI transitioned from 

thought to reality in 1956 when John McCarthy organized a summer workshop 

called Dartmouth Summer Research Project on Artificial Intelligence (DSRPAI) 

where Allen Newell, Cliff Shaw, and Herbert Simon presented the Logic Theorist. 

The Logic Theorist was designed to mimic the problem-solving skills of a human, 

thus a realization of Turing’s original work [4][5]. 

The early attempts to build AI systems involved programmers explicitly 

coding rules which were followed by a program. During this time most experts 

believed that human-level artificial intelligence could be achieved by creating a 

sufficiently large set of explicit rules for manipulating knowledge stored in explicit 

Figure 1: Data Representations learned by a digit-recognition model 



4 

databases. This approach is known as symbolic AI [4]. According to Chollet, 

symbolic AI “was the dominant paradigm in AI from the 1950s to the late 1980s, 

and it reached its peak popularity during the expert systems boom of the 1980s.” 

[4]. 

In 2011, Dan Ciresan had the first practical success of modern deep learning 

when he began to win academic image-classification competitions with GPU-

trained deep neural networks. But the tipping point came in 2012, with the entry of 

Hinton’s group in the yearly large-scale image-classification challenge ImageNet. At 

the time, the top-five accuracy of the winning model, based on classical approaches 

to computer vision, was only 74.3%. Then, in 2012, a team led by Alex Krizhevsky 

was able to achieve a top-five accuracy of 83.6%. By 2015, the winner reached an 

accuracy of 96.4%, and the classification task on ImageNet was considered to be a 

completely solved problem. Since 2012, deep convolutional neural networks 

(convnets) have become the go-to algorithm for all computer vision tasks; more 

generally, they work on all perceptual tasks [4]. 

2 How Neural Networks Learn 

As discussed earlier, a deep learning model “learns” abstract representations 

of input data in each successive layer of the network. In general, we can think of a 

machine learning model as a high dimensional function which maps inputs to 

outputs. This mapping is created by training the model on some pre-existing 

dataset. There are generally two paradigms when it comes to datasets and training 

neural networks, supervised and unsupervised learning. In supervised learning our 

data sets are already labeled. In unsupervised learning, ML models learn how to 
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analyze and cluster unlabeled data [7]. In this paper we will focus on supervised 

learning. 

Let’s discuss an overview of the learning process. At first, we separate our 

dataset into training and testing data. We present the network with training 

examples from the training data which consist of input data together with their 

desired outputs. We then quantify how closely the actual output of the network 

matches the desired output using a loss function. Next, we change the weight of 

each connection so that the network produces a better approximation of the 

desired output in a algorithm called backpropagation [6]. Once we have completed 

the training, we evaluate our model’s performance on testing data. This allows us 

to get an understanding of how well our model performs on data it did not see 

during training, often referred to as generalization or how well the model 

generalizes.  

2.1 Loss Functions 

Loss functions are mathematical methods we use to quantify how right or 

wrong the network is at mapping the input to its output. We use this information 

to steer the weights of the network such that we can reduce the loss over repeated 

training sessions [4]. We will use the multi-class SVM loss function as a way to 

introduce this concept. 

Let’s suppose we have example (𝑥𝑖 , 𝑦𝑖) where 𝑥𝑖 is the input 𝑦𝑖 is the label 

and we provide 𝑥𝑖 to our model, our model will return 𝑠 which is represented as a 

vector of scores shown in Layer 4 of Figure 1. We can thus define the SVM loss as 

follows: 
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where 𝑠𝑗 is the score of the 𝑗-th category and 𝑠𝑦𝑖  is the score of correct class in the 

𝑖-th training set. Here we can see that the loss 𝐿𝑖  is the sum of these differences 

between the correct category and all other categories. From this formula we can 

also see that negative losses result in a zero. This is called a hinge loss which is 

derived in the plot of the function as shown below . 

 

The Multi-class SVM loss is one of many loss functions which can be used to 

quantify how right or wrong the network is at mapping the input to its output. 

Covering these loss functions and their domain application goes beyond the scope 

of this paper, however, now that we understand what the loss function is and how 

it can be used to objectively score a neural network model, we can move on to back 

propagation and gradient descent. 
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2.2 Optimizing the Network Using the Loss Function: Stochastic Gradient 

Descent and Backpropagation 

As discussed in the previous section, the loss function provides us a way to 

objectively quantify how bad a model is at mapping inputs to the right outputs. 

Therefore, we will seek a way to reduce the loss which is the goal of optimization. 

Let’s discuss some of the methods we could use to optimize the loss function.  

The most elementary method we could use is to randomly adjust the weights 

of the network and then evaluate whether the loss function has reduced. Though 

this may end up resulting in a reduce in the loss function, it is very inefficient. Every 

time the weights are updated, we have the cost of inference to see if the updates 

have resulted in a desired result. Maybe we can create a better way.  

Let’s explore the concept of directed adjusting of the weights. One method 

we can use for this is to perturb the value of a weight and evaluate if reducing or 

increasing its value results in a reduction of the loss function. Though this will allow 

us to improve the performance of the network more reliably than randomly 

adjusting the weights, this method is still inefficient. The reason is that we double 

how many times we must evaluate the performance of the network- once for a 

lower weight value and another for a greater weight value.  

Though this past method was not the best approach, it does motivate a 

method that can be more efficient. When we perturb the value of the weight by a 

small value and evaluate the resultant value, it seems very similar to taking the 

derivative of the loss function at a certain point. Let’s explore that idea in more 

detail. 
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Using the impetus of the derivative, we will evaluate a calculus-based concept 

called gradient descent. Given a point on the surface of a function, the gradient is a 

vector that represents which direction to move in order to increase the value of the 

function the most. 

 

 With gradient descent, we use the reciprocal of the gradient to find which 

direction to move in order to decrease the value of the function the quickest. This 

is exactly what we want for the loss function. We want to know how to adjust the 

weights of network such that the loss function reduces the fastest. Another huge 

benefit to this is that we don’t need to evaluate the network. This is by far the most 

efficient method compared to the methods we have explored previously, but it still 

leaves many questions and challenges. How do we take these derivatives? Can we 

use gradient descent in every case? 

One important thing to note is that we can only find this gradient if the 

function is differentiable. A function is differentiable if the derivative exists at every 

point in its domain. Consequently, the only way for the derivative to exist is if the 

function is continuous on its domain [8]. A function 𝑓(𝑥) is continuous at a point 𝑎, 



9 

if the function’s value approaches 𝑓(𝑎)  when 𝑥  approaches 𝑎  for all 𝑎  in the 

domain of 𝑓(𝑥) [9].  

Backpropagation is a way to use the derivatives of simple operations to easily 

compute the gradient of arbitrarily complex combinations of atomic operations [4]. 

In neural networks these atomic operations include operations such as addition, 

ReLU, or tensor product. A neural network consists of many of these operations 

chained together, each of which has a simple and known derivative. From calculus 

we know that we can compute the collective derivative of these chained operations 

using the chain rule. Applying the chain rule to compute the gradient values of a 

neural network gives rise to an algorithm called backpropagation [4]. 

There are many types of gradient descent algorithms. These include 

Stochastic Gradient Descent, Stochastic Gradient Descent with momentum, Mini-

Batch Gradient Descent, Adam, and many more [10]. Which optimizer to use is 

largely dependent on your application [10]. We will discuss some of these in the 

next section. 

2.3 Optimizers 

Now that we have found a vector which defines what direction we should 

move in order to reduce the loss function, we have not discussed how far we should 

move in that direction, a hyperparameter called step size. During back propagation, 

we may find local minima which makes it seem like we have reduced the loss 

function as much as possible. However, if we were to increase the step size we may 

be able to move past that local minima such that we continue towards a location in 
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the weight space which is closer to the absolute minimum. This is what motivates 

us to use an optimizer to optimize the learning process.  

An optimizer is a function or an algorithm that modifies the attributes of the 

neural network, such as weights, learning rate, and step size [10]. We briefly 

mentioned that momentum can be used as a factor when determining  

2.4 Over Fitting 

As we’ve explored the concepts of the loss function and backpropagation, you 

may be thinking that our goal would be to reduce the loss function as much as 

possible such that our model has 100% accuracy on the data used during training. 

However, this is not ideal in the real-world and we will explain why in this section. 

Let’s say that we train our model to have 100% accuracy on the data used during 

testing, but when we evaluate this model on data not seen during training the 

model achieves only 75% accuracy. This brings to light a problem faced in machine 

learning called overfitting.  

Overfitting occurs when a statistical model fits exactly against its training data. 

When this happens, the algorithm cannot perform accurately against unseen data 

[9]. This defeats the goal that we have for our model, mainly that it performs well 

on data seen in real-world applications which may not have been seen during 

training. When the model memorizes and fits too closely to the training data, the 

model becomes “overfitted,” and this is unable to generalize well to new data.  

One of the most popular ways we can assess the accuracy of the model to data 

unseen during training is to use n-fold cross-validation. In n-folds cross-validation, 

data is split into n equally sized subsets, also called “folds.” One of the n-folds will 
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act as the test set and the remaining folds will train the model. This process repeats 

until each of the folds has acted as a test set. After each evaluation, a score is 

retained and when all iterations have completed, the scores are averaged to assess 

the performance of the overall model [9]. This process can be shown graphically as 

shown below. Using the n-fold cross validation training technique, we can vary what 

data is seen during training and more accurately evaluate the performance of the 

network. 

 

2.5 Activation Functions 

Let’s consider now linear layer in a neural network. Without an activation 

function, a dense layer would consist of only two linear operations – a dot product 

and an addition [4]. The output of this layer would be described by: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑑𝑜𝑡(𝑖𝑛𝑝𝑢𝑡,𝑊) + 𝑏 

The problem is that the layer could only learn linear transformations of the 

input data, i.e. the hypothesis space of the layer would only be the set of all possible 

linear transformations of the input data. Such a hypothesis space is too restricted 

and wouldn’t benefit from multiple layers of representations because a stack of 

linear layers would still implement a linear operation [4]. To access a richer 

hypothesis space that would benefit from deep representations, you need a non-
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linearity – or activation function [4]. As you can imagine, there are many activation 

functions each with their own pros and cons and each performing better or worse 

than other options depending on the application. 

There are many things to consider when choosing an activation function, but 

first, what makes a function a good candidate to be an activation function? 

According to Jain, we would need activation functions that have the following 

properties [11]:  

1) Zero-Centered 
Output of the activation function should be symmetrical at zero so that the 
gradients do not shift to a particular direction [11]. 
 

2) Computationally Inexpensive 
Activation functions are applied after every layer and need to be calculated 
millions of times in deep networks. Because of this, activation functions should 
be computationally inexpensive. 
 

3) Differentiable 
As mentioned, neural networks are trained using the gradient descent process, 
hence the layers in the model need to differentiable or at least differentiable 
in parts. This is a necessary requirement for a function to work as activation 
function layer [11]. 
 

4) Avoids vanishing gradients 
When n hidden layers use an activation like the sigmoid function, n small 
derivatives are multiplied together. Thus, the gradient decreases exponentially 
as we propagate down to the initial layers [12]. This results in a network that 
learns too slowly or isn’t able to learn at all.  
 

With those four criteria, let’s review some popular activation functions and 

discuss how well they match each criteria. The function that is used most often as 

an example when considering these functions is the Sigmoid function. 
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As you can see in the graph above, the sigmoid function is differentiable and 

squeezes any value of 𝑡 to be between 0 and 1. However, it is not zero centered, it 

is computationally expensive due to the exponential in the denominator, and it does 

not avoid the vanishing gradient problem. The last point is not as straight forward, 

but let’s consider a high value of 𝑡 . At a high value in the positive or negative 

direction, the derivative gets closer and closer to 0. This creates the vanishing 

gradient problem during backpropagation. Because of these issues the sigmoid 

function is never recommended to use in an actual network and usually serves to 

educate rather than to be applied to a real-world network [11]. 

Next, we will discuss the hyperbolic tangent function, colloquially referred to 

as tanh.  
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As we can see in the graph of tanh, we still have the same problems of vanishing 

gradient and computational expense that we faced with the sigmoid function. 

However, tanh is zero centered which is slightly better than the sigmoid function.  

Next, we will discuss the Rectified Linear Unit, or ReLU, function.  

 

This function is much different than the prior functions we have covered. In the 

ReLU function we see that it is in fact nonlinear, but there aren’t many other pros 

to this function. We still face the problems of not being zero-centered, and the 

vanishing gradient problem for negative values. One of the biggest pros of this 

function though is that it is very computationally inexpensive because the positive 

regime is linear and the negative regime is constant. Because of this, this function 

is sometimes used in real-world models. However, the Leaky ReLU, a variant of the 

ReLU function, is more often used. 

Let’s discuss the pros and cons of the Leaky ReLU function, shown below. 
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In the Leaky ReLU we see that it is zero-centered, differentiable, 

computationally inexpensive, and avoids the vanishing gradient problem, unlike the 

standard ReLU function. Because of this, the Leaky ReLU is widely used in deep 

learning models. 

2.6 Weight Initialization Schemes 

Weight initialization is a critical component in deep learning, but it is often 

glossed over in texts. The reason may be that weight initialization is usually handled 

with whatever deep learning framework you use. However, it is important because 

having the right weight initialization will determine the behavior of the network and 

could determine if the network will converge at all [13]. Weight initialization is a 

procedure to set the weights of a neural network to small random values that define 

the starting point for the optimization of the neural network [14]. 

Usually, we will initialize all the weights in the model to values drawn randomly 

from a Gaussian or uniform distribution. The scale of the initial distribution has a 

large effect on both the outcome of the optimization procedure and on the ability 

of the network to generalize [13]. These random values are usually between -1 to 

1, -0.3 to 0.3, or 0 to 1 [14]. Nevertheless, more modern approaches have been 
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developed that have become the defacto standard given they may result in a slightly 

more effective optimization (model training) process. These modern weight 

initialization techniques are divided based on the type of activation function used 

in the nodes that are being initialized, such as Sigmoid, Tanh, or ReLU [14]. 

The current standard approach for initialization of the weights of neural 

network layers and nodes that use the Sigmoid or Tanh activation function is called 

Glorot or Xavier initialization after its inventor Xavier Glorot. The Xavier initialization 

method is calculated as a random number with a uniform probability distribution 𝑈 

between the range −
1

√𝑛
 and 

1

√𝑛
, where 𝑛 is the number of inputs to the node. The 

Xavier weight initialization was found to have problems when used to initialize 

networks that use the ReLU activation function [14]. The standard approach for 

weight initialization of neural networks that use the ReLU activation function is 

called “he” initialization after its creator Kaiming He. The He initialization method is 

calculated as a random number with a Gaussian probability distribution 𝐺 with a 

mean of 0.0 and a standard deviation of √
2

𝑛
, where 𝑛 is the number of inputs to the 

node [14]. 

 

2.7 Batch Normalization 

As discussed in the prior sections, training a model with many layers can be 

difficult and initialization of the weights of a network can have a large effect on how 

well the network is able to perform. One possible reason for this difficulty is the 

distribution of the inputs to layers deep in the network will likely change after each 

mini batch when the weights are updated. This can cause the learning algorithm to 
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chase a moving target. This change in the distribution of inputs to layers in the 

network is referred to by the technical name internal covariate shift. Batch 

normalization is a technique for training very deep neural networks that 

standardizes the inputs to a layer for each mini batch. Batch normalization has the 

effect of stabilizing the learning process and dramatically reducing the number of 

training epochs required to train deep networks [15].  

3 Architectures 

Artificial neural network (ANN) is the underlying architecture behind deep 

learning. Based on ANN, several variations of the algorithms have been invented 

[16]. Now that we have discussed what neural networks are, how they learn, and 

the theory behind some of the foundational concepts, let’s dive into the application 

of some common network architectures. 

3.1 Convolutional Neural Networks 

A Convolutional Neural Network (CNN) may be one of the most ubiquitous 

neural network architectures currently. A CNN is a multilayer neural network that 

is said to be inspired by the animal visual cortex. The first CNN was created by Yann 

LeCun in order to recognize handwritten characters, such as postal code 

interpretation. Early layers of the network recognize features and later layers 

recombine these features into higher-level abstractions of the input [16].  

Networks used for image classification are usually two dimensional CNNs, and 

those used for audio effects and classification are usually one dimensional CNNs. 

The 2D CNNs are most popular and are referred to colloquially as CNNs. There are 

many different variations of convolutional neural networks. In fact, many of the 



18 

most famous architectures, such as ResNet, AlexNet, and LeNet, are CNNs. In this 

section we will just cover LeNet, however we will also explore ResNet in later 

sections. 

The LeNet CNN architecture is made up of multiple layers that implement 

feature extraction and then classification as shown below. The image is divided into 

receptive fields that feed into a convolutional layer by convolving filters called 

kernels over the image which serves to extract features from the input image. The 

next step is pooling, which is used to reduce the dimensionality of the extracted 

features through down-sampling while retaining the most important information. 

Another convolution and pooling step is performed that feeds into a fully connected 

multilayer perceptron. The final output layer of this network is a set of nodes that 

identify features of the image [16]. 

 

In addition to image processing, CNNs have been successfully applied to video 

analysis and various tasks within natural language processing [16]. Now that we 

have a general idea of what a convolutional neural network is, lets discuss the 

theory and function of these networks in more detail. 

Unlike conventional fully connected (FC) networks, CNNs employ shared 

weights and local connections to make full use of 2D input-data structures like 

image signals. This operation utilizes an extremely small number of parameters, 
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which serves to simplify the training process and speed up the network [17]. The 

most significant component of this architecture is the convolutional layer. It consists 

of a collection of convolutional filters (so-called kernels). The input image is 

convolved with these filters to generate the output feature map [17]. For the next 

few paragraphs lets move our attention from LeNet to a generic CNN as shown 

below. 

 

A grid of discrete values, called the kernel weight, defines the kernel. As 

discussed in prior sections, random numbers are assigned to act as the weights of 

the kernel at the beginning of the training process. Next, these weights are adjusted 

at each training era; thus, teaching the kernel to extract features of interest. 

To understand the convolutional operation in more depth, let’s discuss an 

example of a 4×4 gray-scale image with a 2×2 random weight-initialized kernel. 

First, the kernel slides, or convolves, over the whole image horizontally and 

vertically. During this process, the dot product between the input image and the 

kernel is determined, where their corresponding values are multiplied and then 

summed up to create a single scalar value. The calculated dot product values 

represent the feature map of the output. The figure below graphically illustrates 
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the primary calculations executed at each step. In this figure, the light green color 

represents the 2×2 kernel, while the light blue color represents the area of the input 

image. Both are multiplied; the end result after summing up the resulting product 

values – shown in a light orange color- represent an entry value to the output 

feature map [17]. 

 

Each convolutional layer is followed by a pooling layer. The main task of the 

pooling layer is the sub-sampling of the feature maps created in the convolution 

process. Similar to the convolutional operation, a kernel is used to convolve over 

the activation maps and both the stride and the kernel are initially size-assigned 

before the pooling operation is executed. Several types of pooling methods exists 

which include tree pooling, gated pooling, average pooling, min pooling, max 

pooling, global average pooling (GAP), and global max pooling. The most frequently 

utilized pooling methods are the max, min, and GAP pooling shown in the figure 

below. Sometimes the overall CNN performance is decreased as a result of the 
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pooling layer which is the main shortfall of the pooling layer. The reason for the 

decrease in performance is that the pooling layer helps the CNN to determine 

whether or not a certain feature is available in the particular input image, but 

focuses exclusively on ascertaining the correct location of that feature causing the 

CNN model misses the relevant information [17]. 

 

Usually a fully connected (FC) layer is located at the end of a CNN architecture. 

Inside a fully connected layer, each neuron is connected to all neurons of the 

previous layer. It follows the basic method of the conventional neural network. The 

input of the FC layer comes from the last pooling or convolutional layer. This input 

is in the form of a vector, which is created from the feature maps after flattening. 

The output of the FC layer represents the final CNN output and thus it is utilized as 

the CNN classifier [17]. 

3.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are another commonly employed 

architecture in deep learning and are mainly applied in the area of speech 

processing and NLP contexts where sequencing of information is important [17]. 

The primary difference between a typical multilayer network and a recurrent 

network is that rather than completely feed-forward connections, a recurrent 

network might have connections that feed back into prior layers. This feedback 
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allows RNNs to maintain memory of past inputs and model problems in time [16]. 

Since the embedded structure in the sequence of the data delivers valuable 

information, RNNs are fundamental to a range of different applications. For 

example, it is important to understand the context of the sentence in order to 

determine the meaning of a specific word in it. Thus, it is possible to consider the 

RNN as a unit of short-term memory, where 𝑥 represents the input layer, 𝑦 is the 

output layer, and 𝑠 represents the state (hidden) layer [17]. A typical unfolded RNN 

diagram is illustrated below.  

 

One of the main issues with RNNs are their sensitivity to the exploding 

gradient and vanishing problems. During the training process, the reduplications of 

several large or small derivatives may cause the gradients to exponentially explode 

or decay [17]. 

3.2.1 Long Short-Term Memory Unit 

The Long Short-Term Memory Unit (LSTM) was created in 1997 by Hochreiter 

and Schimdhuber, and has grown in popularity in recent years as an RNN 
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architecture for various applications [16]. The LSTM introduced the concept of a 

memory cell. A memory cell can retain its value for a short or long time as a function 

of its inputs. This allows the cell to remember what's important and not just its last 

computed value [16]. 

 The LSTM memory cell contains three gates that control when and how 

information flows into or out of the cell. The input gate controls when new 

information can flow into the cell. The forget gate controls when an existing piece 

of information is forgotten. This allows more recent data to be considered by the 

network over old data. Finally, the output gate controls when the information that 

is contained in the cell will be used in the output from the cell. The cell also contains 

weights which control each gate [16]. Shown below is a diagram of the memory cell 

shown in the greater context of the RNN network. 

 

3.3 Auto Encoder/Decoder 

 The first known usage of Auto-Encoders (AEs) was found to be by LeCun in 

1987 [16]. The central idea of AEs is to take some data of high dimension, represent 

this data in a lower dimensional latent representation of the input, which is the role 

of the encoder, and then up-sample the latent representation to try to most 

accurately reconstruct the input which is the role of the decoder. The term Auto 

Encoder is often used to describe an Auto Encoder/Decoder network; however, the 
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role of the encoder and decoder differ greatly. In this section we will further 

contribute to the overloading of the term and refer to an Auto Encoder/Decoder as 

an Auto Encoder or AE for short. 

 In general, this variant of an ANN is composed of input, hidden, and output 

layers. The input layer is encoded into the hidden layer using an appropriate 

encoding function. The number of nodes in the hidden layer is much less than the 

number of nodes in the input layer, creating a compressed or latent representation 

of the original input. Lastly, the output layer aims to reconstruct the input layer by 

using a decoder function. 

 

 At first it may not make much sense as to why we would want to regenerate 

the input; however, there are a few applications where this makes sense. Let’s say 

we have an image that is blurry, and we would like to up-sample it to reduce the 

noise. An Auto Encoder/Decoder can be used to recreate the image and the 

decoder could be trained to up-sample the image. We can also use the decoder part 

of the network in generative neural networks to create images from latent 

representations of a piece of text which is used to describe the image to be 
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generated by the network. It is this last application which motivates our next section 

on Generative Adversarial Networks. 

3.4 Generative Neural Networks 

The word "Generative" in Generative Neural Networks describes a class of 

statistical models that contrasts with the discriminative models which we have 

discussed in detail in sections prior. Informally, Generative models can generate 

new data instances. More formally, given a set of data instances 𝑋 and a set of 

labels 𝑌, Generative models capture the joint probability 𝑝(𝑋, 𝑌), or just 𝑝(𝑋) if 

there are no labels [18].  

A generative model for images might capture correlations like "things that 

look like cars are probably going to appear near things that look like roads" and 

"fingers are not likely to appear on feet." Both of these examples are very 

complicated distributions. In contrast, a discriminative model might learn the 

difference between "dog" or "not dog" by just learning from a few examples. 

Discriminative models attempt to find boundaries in the data space, while 

generative models try to model how data is placed throughout the space [18]. This 

is illustrated well in the figure below. 
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3.4.1 Generative Adversarial Networks 

A generative adversarial network (GAN) has two parts: the generator and the 

discriminator. The generator learns to generate data which would be plausible in 

the data domain. The discriminator learns to distinguish the generator's fake data 

from real data. The discriminator penalizes the generator for producing implausible 

results which is where term adversarial comes from [19].  

When training begins, the generator is not very good at producing convincing 

data so the discriminator can easily tell that it's fake [19]. 

 

 As training continues, the generator becomes better at generating 

convincing data which is better able to fool the discriminator [19]. 

 

Finally, the generator becomes so good at generating convincing data that the 

discriminator can no longer tell the fake from the real data [19]. 

 

A diagram of the system is shown below. 
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4 A Deep Dive into Transfer Learning with ResNet 

Now that we have strong foundational knowledge of deep learning, let’s 

discuss the final project. In this section we utilize a method called transfer learning 

which allows us to transfer the knowledge from a pre-existing model to a new 

model in order to extend that models classification ability. 

4.1 Objective 

The objective for this assignment was to utilize transfer learning with a model 

called ResNet-50 and extend ResNet’s functionality to classify dog breeds. We then 

tuned the network using various hyper parameter configurations. The data set for 

this assignment can be found here. 

4.2 Transfer Learning 

Transfer learning is a machine learning method where a model developed for 

a certain task is reused as the starting point for a model on a different task. It is a 

popular approach in deep learning where pre-trained models are used as the 

starting point given the vast compute and time resources required to develop 

https://www.kaggle.com/c/dog-breed-identification
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neural network models on certain problems and from the huge jumps in skill that 

they provide on related problems [20].  

Lisa Torrey and Jude Shavlik describe three possible benefits to look for when 

using transfer learning. First, transfer learning enables a higher start meaning the 

initial skill (before refining the model) on the source model is higher than it 

otherwise would be. Second, transfer learning enables higher slope meaning the 

rate of improvement of skill during training of the source model is steeper than it 

otherwise would be. Lastly, transfer learning allows a higher asymptote meaning 

the converged skill of the trained model is better than it otherwise would be [20]. 

 

4.3 ResNet 

The first ResNet architecture was the Resnet-34 which involved the insertion 

of shortcut connections in turning a plain network into its residual network 

counterpart. The plain network was inspired by VGG neural with the convolutional 

networks having 3×3 kernels. However, compared to VGGNets, ResNets have fewer 

filters and lower complexity. While the input and output dimensions were the same 

as VGG, the identity shortcuts were directly used [20]. 
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The Resnet50 architecture is based on Resnet-34 with one major difference. 

In Resnet50 the building block was modified into a bottleneck design and each of 

the 2-layer blocks in Resnet34 was replaced with a 3-layer bottleneck block. This 

resulted in a much higher accuracy than the previous 34-layer ResNet model [20]. 

4.4 Method 

In this project, we used PyTorch which is a python-based machine learning 

framework. Using PyTorch we are able to use a pre-trained ResNet50 model with 

the following line of code. 

resnet = models.resnet50(weights='ResNet50_Weights.DEFAULT') 

 

 We kept the ResNet50 model the same by disabling gradients in the ResNet 

layers while we trained our network to learn classification of dog breeds. This can 

be seen in the following lines of code. 

# freeze all model parameters 

for param in resnet.parameters(): 

    param.requires_grad = False 

 

Next, we were able to create new Fully Connected layers at the end of the 

model to perform the dog breed classification.  

# new final layer with classes 

num_ftrs = resnet.fc.in_features 

resnet.fc = torch.nn.Linear(num_ftrs, NUM_BREEDS) 

 

 The training function, train_model, is the heart of the learning process 

for our model. For each epoch we first conduct a training phase which calculates 

the loss, performs back propagation, and finally updates the weights of the network 

using optimizer.step(). Next, we conduct a validation phase where we only 
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evaluate the loss and do not update the network. The full code can be found in the 

Appendix. 

Once we had trained our first models, we began to vary the hyper parameters 

of the network and record how well the model performed. Finally, then graphed 

our model accuracy over multiple training epochs. 

4.5 Findings 

We found that using ResNet as our base model we were able to achieve a max 

accuracy of 88.6%. The following table shows the best accuracy for various 

configuration of hyperparameter values. 

 

From this table we can see that we achieved the best results when the 

hyperparameters of the network were equal to the first row. We tracked the 

accuracy of the model during training and validation phases which can be seen 

below. 
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From this chart we see that after two epochs the model starts to suffer from 

over fitting, where the accuracy of the model on the training dataset surpasses 

the accuracy of the model on the validation dataset. This is likely due to the large 

number of weights contained within the ResNet architecture. We saw similar 

results for the other configuration of hyper parameters shown in the table. 

Though an accuracy of 88.7% could be considered an acceptable result, we 

believe more work is needed to improve the accuracy of the model overall. We 

believe that the ResNet model may have actually caused us to have relatively poor 

results due to the images in the dataset containing people and other objects which 

may have caused ResNet to classify that picture as a person rather than a dog. 

Because of this concern we also created a small convolutional network so we could 

compare the two.  
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4.6 Conclusion 

Transfer Learning has become more popular in the field of Machine Learning 

as networks with high levels of accuracy have become more popular. Used as a tool, 

transfer learning allows you to build on top of a preexisting model, further 

specializing the model for the task you aim to solve. We will utilize this technique in 

our project to build a model which will successfully classify dog breeds. We utilize a 

model called ResNet in order to solve our classification task. We found that using 

ResNet as our base model we were able to achieve an accuracy of 88%. More work 

is needed to tune the hyperparameters of our network to see if a better accuracy 

can be realized. Also, more work is needed to compare this method to a more 

traditional CNN.  
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