

Preprint. Under Review.
1

A Review of Deep Learning Architectures and

Application of Transfer Learning for Image Classification

John D. Wise
jdwise@uab.edu

Baocheng Geng
bgeng@uab.edu

Abstract

Deep Learning is a vast field within computer science which has made tremendous

progress in its application and abilities in the past decade. Some of the applications

of deep learning include image recognition, language translation, neural audio

effects, self-driving automobiles, and even cancer diagnosis. In this paper we will

explore some of the foundational architectures of deep learning as well as their

various applications. We will then go on to discuss our hands on experience with

transfer learning using ResNet, an architecture for the task of image classification.

1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) have become modern

buzzwords in the world of business and science, with ninety one percent of leading

companies investing in AI on an on-going basis and one in twelve startups using

some form of AI [1][2]. Some of the applications include online purchase

recommendations, advertisements, fraud detection, autonomous driving cars,

stream history-influenced video viewing recommendations, and orthopedic

medicine [3]. With the vast array of applications of AI and ML, it’s easy to

understand why such a high percentage of companies are interested in the

2

technology. In this paper we will explore some of the foundational architectures of

deep learning as well as their various applications. We will then go on to discuss our

hands on experience with transfer learning using ResNet architecture for the task

of image classification.

Machine Learning is a subset of Artificial Intelligence which is focused in

experiential learning on large datasets which ideally allow a model to produce a

correct or reasonable output given an input [3]. In the traditional paradigm of

software engineering, a programmer would write a program, which could be

thought of as a series of procedures or rules, which would solve a real-world

problem. The logic of the program would be explicitly written in the code. Machine

Learning is a complete flip of this paradigm. In machine learning we train models to

learn mappings from inputs to outputs or features to targets respectively. Using a

loss function to know how bad its prediction was, the model adapts during training

and gradually gets better at this mapping [4]. As stated by Chollet, “Learning, in the

context of machine learning, describes an automatic search process for data

transformations that produce useful representations of some data, guided by some

feedback signal—representations that are amenable to simpler rules solving the

task at hand.”

Deep Learning is a subset of Machine Learning which uses neural networks to

perform this mapping from inputs to outputs. The ‘deep’ in Deep Learning is a

reference to the principal idea of using successive layers to create abstract

representations from features of the input data. Depth, in this sense, refers to how

many layers are contained within a model. To say one model has more depth than

3

another is not to say that it is more sophisticated, rather it just means that one

model has more layers than another. In general, deep learning is a mathematical

framework for learning and connecting representations of data [4].

1.1 A Brief History

The idea of Artificial Intelligence (AI) was a pioneered by Alan Turing in his

1950 paper, Computing Machinery and Intelligence [5]. Though AI was only

presented as an idea in his paper, Turing laid some foundational thoughts that still

impact how we think about AI, such as the Turing Test. AI transitioned from

thought to reality in 1956 when John McCarthy organized a summer workshop

called Dartmouth Summer Research Project on Artificial Intelligence (DSRPAI)

where Allen Newell, Cliff Shaw, and Herbert Simon presented the Logic Theorist.

The Logic Theorist was designed to mimic the problem-solving skills of a human,

thus a realization of Turing’s original work [4][5].

The early attempts to build AI systems involved programmers explicitly

coding rules which were followed by a program. During this time most experts

believed that human-level artificial intelligence could be achieved by creating a

sufficiently large set of explicit rules for manipulating knowledge stored in explicit

Figure 1: Data Representations learned by a digit-recognition model

4

databases. This approach is known as symbolic AI [4]. According to Chollet,

symbolic AI “was the dominant paradigm in AI from the 1950s to the late 1980s,

and it reached its peak popularity during the expert systems boom of the 1980s.”

[4].

In 2011, Dan Ciresan had the first practical success of modern deep learning

when he began to win academic image-classification competitions with GPU-

trained deep neural networks. But the tipping point came in 2012, with the entry of

Hinton’s group in the yearly large-scale image-classification challenge ImageNet. At

the time, the top-five accuracy of the winning model, based on classical approaches

to computer vision, was only 74.3%. Then, in 2012, a team led by Alex Krizhevsky

was able to achieve a top-five accuracy of 83.6%. By 2015, the winner reached an

accuracy of 96.4%, and the classification task on ImageNet was considered to be a

completely solved problem. Since 2012, deep convolutional neural networks

(convnets) have become the go-to algorithm for all computer vision tasks; more

generally, they work on all perceptual tasks [4].

2 How Neural Networks Learn

As discussed earlier, a deep learning model “learns” abstract representations

of input data in each successive layer of the network. In general, we can think of a

machine learning model as a high dimensional function which maps inputs to

outputs. This mapping is created by training the model on some pre-existing

dataset. There are generally two paradigms when it comes to datasets and training

neural networks, supervised and unsupervised learning. In supervised learning our

data sets are already labeled. In unsupervised learning, ML models learn how to

5

analyze and cluster unlabeled data [7]. In this paper we will focus on supervised

learning.

Let’s discuss an overview of the learning process. At first, we separate our

dataset into training and testing data. We present the network with training

examples from the training data which consist of input data together with their

desired outputs. We then quantify how closely the actual output of the network

matches the desired output using a loss function. Next, we change the weight of

each connection so that the network produces a better approximation of the

desired output in a algorithm called backpropagation [6]. Once we have completed

the training, we evaluate our model’s performance on testing data. This allows us

to get an understanding of how well our model performs on data it did not see

during training, often referred to as generalization or how well the model

generalizes.

2.1 Loss Functions

Loss functions are mathematical methods we use to quantify how right or

wrong the network is at mapping the input to its output. We use this information

to steer the weights of the network such that we can reduce the loss over repeated

training sessions [4]. We will use the multi-class SVM loss function as a way to

introduce this concept.

Let’s suppose we have example (𝑥𝑖 , 𝑦𝑖) where 𝑥𝑖 is the input 𝑦𝑖 is the label

and we provide 𝑥𝑖 to our model, our model will return 𝑠 which is represented as a

vector of scores shown in Layer 4 of Figure 1. We can thus define the SVM loss as

follows:

6

where 𝑠𝑗 is the score of the 𝑗-th category and 𝑠𝑦𝑖 is the score of correct class in the

𝑖-th training set. Here we can see that the loss 𝐿𝑖 is the sum of these differences

between the correct category and all other categories. From this formula we can

also see that negative losses result in a zero. This is called a hinge loss which is

derived in the plot of the function as shown below .

The Multi-class SVM loss is one of many loss functions which can be used to

quantify how right or wrong the network is at mapping the input to its output.

Covering these loss functions and their domain application goes beyond the scope

of this paper, however, now that we understand what the loss function is and how

it can be used to objectively score a neural network model, we can move on to back

propagation and gradient descent.

7

2.2 Optimizing the Network Using the Loss Function: Stochastic Gradient

Descent and Backpropagation

As discussed in the previous section, the loss function provides us a way to

objectively quantify how bad a model is at mapping inputs to the right outputs.

Therefore, we will seek a way to reduce the loss which is the goal of optimization.

Let’s discuss some of the methods we could use to optimize the loss function.

The most elementary method we could use is to randomly adjust the weights

of the network and then evaluate whether the loss function has reduced. Though

this may end up resulting in a reduce in the loss function, it is very inefficient. Every

time the weights are updated, we have the cost of inference to see if the updates

have resulted in a desired result. Maybe we can create a better way.

Let’s explore the concept of directed adjusting of the weights. One method

we can use for this is to perturb the value of a weight and evaluate if reducing or

increasing its value results in a reduction of the loss function. Though this will allow

us to improve the performance of the network more reliably than randomly

adjusting the weights, this method is still inefficient. The reason is that we double

how many times we must evaluate the performance of the network- once for a

lower weight value and another for a greater weight value.

Though this past method was not the best approach, it does motivate a

method that can be more efficient. When we perturb the value of the weight by a

small value and evaluate the resultant value, it seems very similar to taking the

derivative of the loss function at a certain point. Let’s explore that idea in more

detail.

8

Using the impetus of the derivative, we will evaluate a calculus-based concept

called gradient descent. Given a point on the surface of a function, the gradient is a

vector that represents which direction to move in order to increase the value of the

function the most.

 With gradient descent, we use the reciprocal of the gradient to find which

direction to move in order to decrease the value of the function the quickest. This

is exactly what we want for the loss function. We want to know how to adjust the

weights of network such that the loss function reduces the fastest. Another huge

benefit to this is that we don’t need to evaluate the network. This is by far the most

efficient method compared to the methods we have explored previously, but it still

leaves many questions and challenges. How do we take these derivatives? Can we

use gradient descent in every case?

One important thing to note is that we can only find this gradient if the

function is differentiable. A function is differentiable if the derivative exists at every

point in its domain. Consequently, the only way for the derivative to exist is if the

function is continuous on its domain [8]. A function 𝑓(𝑥) is continuous at a point 𝑎,

9

if the function’s value approaches 𝑓(𝑎) when 𝑥 approaches 𝑎 for all 𝑎 in the

domain of 𝑓(𝑥) [9].

Backpropagation is a way to use the derivatives of simple operations to easily

compute the gradient of arbitrarily complex combinations of atomic operations [4].

In neural networks these atomic operations include operations such as addition,

ReLU, or tensor product. A neural network consists of many of these operations

chained together, each of which has a simple and known derivative. From calculus

we know that we can compute the collective derivative of these chained operations

using the chain rule. Applying the chain rule to compute the gradient values of a

neural network gives rise to an algorithm called backpropagation [4].

There are many types of gradient descent algorithms. These include

Stochastic Gradient Descent, Stochastic Gradient Descent with momentum, Mini-

Batch Gradient Descent, Adam, and many more [10]. Which optimizer to use is

largely dependent on your application [10]. We will discuss some of these in the

next section.

2.3 Optimizers

Now that we have found a vector which defines what direction we should

move in order to reduce the loss function, we have not discussed how far we should

move in that direction, a hyperparameter called step size. During back propagation,

we may find local minima which makes it seem like we have reduced the loss

function as much as possible. However, if we were to increase the step size we may

be able to move past that local minima such that we continue towards a location in

10

the weight space which is closer to the absolute minimum. This is what motivates

us to use an optimizer to optimize the learning process.

An optimizer is a function or an algorithm that modifies the attributes of the

neural network, such as weights, learning rate, and step size [10]. We briefly

mentioned that momentum can be used as a factor when determining

2.4 Over Fitting

As we’ve explored the concepts of the loss function and backpropagation, you

may be thinking that our goal would be to reduce the loss function as much as

possible such that our model has 100% accuracy on the data used during training.

However, this is not ideal in the real-world and we will explain why in this section.

Let’s say that we train our model to have 100% accuracy on the data used during

testing, but when we evaluate this model on data not seen during training the

model achieves only 75% accuracy. This brings to light a problem faced in machine

learning called overfitting.

Overfitting occurs when a statistical model fits exactly against its training data.

When this happens, the algorithm cannot perform accurately against unseen data

[9]. This defeats the goal that we have for our model, mainly that it performs well

on data seen in real-world applications which may not have been seen during

training. When the model memorizes and fits too closely to the training data, the

model becomes “overfitted,” and this is unable to generalize well to new data.

One of the most popular ways we can assess the accuracy of the model to data

unseen during training is to use n-fold cross-validation. In n-folds cross-validation,

data is split into n equally sized subsets, also called “folds.” One of the n-folds will

11

act as the test set and the remaining folds will train the model. This process repeats

until each of the folds has acted as a test set. After each evaluation, a score is

retained and when all iterations have completed, the scores are averaged to assess

the performance of the overall model [9]. This process can be shown graphically as

shown below. Using the n-fold cross validation training technique, we can vary what

data is seen during training and more accurately evaluate the performance of the

network.

2.5 Activation Functions

Let’s consider now linear layer in a neural network. Without an activation

function, a dense layer would consist of only two linear operations – a dot product

and an addition [4]. The output of this layer would be described by:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑑𝑜𝑡(𝑖𝑛𝑝𝑢𝑡,𝑊) + 𝑏

The problem is that the layer could only learn linear transformations of the

input data, i.e. the hypothesis space of the layer would only be the set of all possible

linear transformations of the input data. Such a hypothesis space is too restricted

and wouldn’t benefit from multiple layers of representations because a stack of

linear layers would still implement a linear operation [4]. To access a richer

hypothesis space that would benefit from deep representations, you need a non-

12

linearity – or activation function [4]. As you can imagine, there are many activation

functions each with their own pros and cons and each performing better or worse

than other options depending on the application.

There are many things to consider when choosing an activation function, but

first, what makes a function a good candidate to be an activation function?

According to Jain, we would need activation functions that have the following

properties [11]:

1) Zero-Centered
Output of the activation function should be symmetrical at zero so that the
gradients do not shift to a particular direction [11].

2) Computationally Inexpensive
Activation functions are applied after every layer and need to be calculated
millions of times in deep networks. Because of this, activation functions should
be computationally inexpensive.

3) Differentiable
As mentioned, neural networks are trained using the gradient descent process,
hence the layers in the model need to differentiable or at least differentiable
in parts. This is a necessary requirement for a function to work as activation
function layer [11].

4) Avoids vanishing gradients
When n hidden layers use an activation like the sigmoid function, n small
derivatives are multiplied together. Thus, the gradient decreases exponentially
as we propagate down to the initial layers [12]. This results in a network that
learns too slowly or isn’t able to learn at all.

With those four criteria, let’s review some popular activation functions and

discuss how well they match each criteria. The function that is used most often as

an example when considering these functions is the Sigmoid function.

13

As you can see in the graph above, the sigmoid function is differentiable and

squeezes any value of 𝑡 to be between 0 and 1. However, it is not zero centered, it

is computationally expensive due to the exponential in the denominator, and it does

not avoid the vanishing gradient problem. The last point is not as straight forward,

but let’s consider a high value of 𝑡 . At a high value in the positive or negative

direction, the derivative gets closer and closer to 0. This creates the vanishing

gradient problem during backpropagation. Because of these issues the sigmoid

function is never recommended to use in an actual network and usually serves to

educate rather than to be applied to a real-world network [11].

Next, we will discuss the hyperbolic tangent function, colloquially referred to

as tanh.

14

As we can see in the graph of tanh, we still have the same problems of vanishing

gradient and computational expense that we faced with the sigmoid function.

However, tanh is zero centered which is slightly better than the sigmoid function.

Next, we will discuss the Rectified Linear Unit, or ReLU, function.

This function is much different than the prior functions we have covered. In the

ReLU function we see that it is in fact nonlinear, but there aren’t many other pros

to this function. We still face the problems of not being zero-centered, and the

vanishing gradient problem for negative values. One of the biggest pros of this

function though is that it is very computationally inexpensive because the positive

regime is linear and the negative regime is constant. Because of this, this function

is sometimes used in real-world models. However, the Leaky ReLU, a variant of the

ReLU function, is more often used.

Let’s discuss the pros and cons of the Leaky ReLU function, shown below.

15

In the Leaky ReLU we see that it is zero-centered, differentiable,

computationally inexpensive, and avoids the vanishing gradient problem, unlike the

standard ReLU function. Because of this, the Leaky ReLU is widely used in deep

learning models.

2.6 Weight Initialization Schemes

Weight initialization is a critical component in deep learning, but it is often

glossed over in texts. The reason may be that weight initialization is usually handled

with whatever deep learning framework you use. However, it is important because

having the right weight initialization will determine the behavior of the network and

could determine if the network will converge at all [13]. Weight initialization is a

procedure to set the weights of a neural network to small random values that define

the starting point for the optimization of the neural network [14].

Usually, we will initialize all the weights in the model to values drawn randomly

from a Gaussian or uniform distribution. The scale of the initial distribution has a

large effect on both the outcome of the optimization procedure and on the ability

of the network to generalize [13]. These random values are usually between -1 to

1, -0.3 to 0.3, or 0 to 1 [14]. Nevertheless, more modern approaches have been

16

developed that have become the defacto standard given they may result in a slightly

more effective optimization (model training) process. These modern weight

initialization techniques are divided based on the type of activation function used

in the nodes that are being initialized, such as Sigmoid, Tanh, or ReLU [14].

The current standard approach for initialization of the weights of neural

network layers and nodes that use the Sigmoid or Tanh activation function is called

Glorot or Xavier initialization after its inventor Xavier Glorot. The Xavier initialization

method is calculated as a random number with a uniform probability distribution 𝑈

between the range −
1

√𝑛
 and

1

√𝑛
, where 𝑛 is the number of inputs to the node. The

Xavier weight initialization was found to have problems when used to initialize

networks that use the ReLU activation function [14]. The standard approach for

weight initialization of neural networks that use the ReLU activation function is

called “he” initialization after its creator Kaiming He. The He initialization method is

calculated as a random number with a Gaussian probability distribution 𝐺 with a

mean of 0.0 and a standard deviation of √
2

𝑛
, where 𝑛 is the number of inputs to the

node [14].

2.7 Batch Normalization

As discussed in the prior sections, training a model with many layers can be

difficult and initialization of the weights of a network can have a large effect on how

well the network is able to perform. One possible reason for this difficulty is the

distribution of the inputs to layers deep in the network will likely change after each

mini batch when the weights are updated. This can cause the learning algorithm to

17

chase a moving target. This change in the distribution of inputs to layers in the

network is referred to by the technical name internal covariate shift. Batch

normalization is a technique for training very deep neural networks that

standardizes the inputs to a layer for each mini batch. Batch normalization has the

effect of stabilizing the learning process and dramatically reducing the number of

training epochs required to train deep networks [15].

3 Architectures

Artificial neural network (ANN) is the underlying architecture behind deep

learning. Based on ANN, several variations of the algorithms have been invented

[16]. Now that we have discussed what neural networks are, how they learn, and

the theory behind some of the foundational concepts, let’s dive into the application

of some common network architectures.

3.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) may be one of the most ubiquitous

neural network architectures currently. A CNN is a multilayer neural network that

is said to be inspired by the animal visual cortex. The first CNN was created by Yann

LeCun in order to recognize handwritten characters, such as postal code

interpretation. Early layers of the network recognize features and later layers

recombine these features into higher-level abstractions of the input [16].

Networks used for image classification are usually two dimensional CNNs, and

those used for audio effects and classification are usually one dimensional CNNs.

The 2D CNNs are most popular and are referred to colloquially as CNNs. There are

many different variations of convolutional neural networks. In fact, many of the

18

most famous architectures, such as ResNet, AlexNet, and LeNet, are CNNs. In this

section we will just cover LeNet, however we will also explore ResNet in later

sections.

The LeNet CNN architecture is made up of multiple layers that implement

feature extraction and then classification as shown below. The image is divided into

receptive fields that feed into a convolutional layer by convolving filters called

kernels over the image which serves to extract features from the input image. The

next step is pooling, which is used to reduce the dimensionality of the extracted

features through down-sampling while retaining the most important information.

Another convolution and pooling step is performed that feeds into a fully connected

multilayer perceptron. The final output layer of this network is a set of nodes that

identify features of the image [16].

In addition to image processing, CNNs have been successfully applied to video

analysis and various tasks within natural language processing [16]. Now that we

have a general idea of what a convolutional neural network is, lets discuss the

theory and function of these networks in more detail.

Unlike conventional fully connected (FC) networks, CNNs employ shared

weights and local connections to make full use of 2D input-data structures like

image signals. This operation utilizes an extremely small number of parameters,

19

which serves to simplify the training process and speed up the network [17]. The

most significant component of this architecture is the convolutional layer. It consists

of a collection of convolutional filters (so-called kernels). The input image is

convolved with these filters to generate the output feature map [17]. For the next

few paragraphs lets move our attention from LeNet to a generic CNN as shown

below.

A grid of discrete values, called the kernel weight, defines the kernel. As

discussed in prior sections, random numbers are assigned to act as the weights of

the kernel at the beginning of the training process. Next, these weights are adjusted

at each training era; thus, teaching the kernel to extract features of interest.

To understand the convolutional operation in more depth, let’s discuss an

example of a 4×4 gray-scale image with a 2×2 random weight-initialized kernel.

First, the kernel slides, or convolves, over the whole image horizontally and

vertically. During this process, the dot product between the input image and the

kernel is determined, where their corresponding values are multiplied and then

summed up to create a single scalar value. The calculated dot product values

represent the feature map of the output. The figure below graphically illustrates

20

the primary calculations executed at each step. In this figure, the light green color

represents the 2×2 kernel, while the light blue color represents the area of the input

image. Both are multiplied; the end result after summing up the resulting product

values – shown in a light orange color- represent an entry value to the output

feature map [17].

Each convolutional layer is followed by a pooling layer. The main task of the

pooling layer is the sub-sampling of the feature maps created in the convolution

process. Similar to the convolutional operation, a kernel is used to convolve over

the activation maps and both the stride and the kernel are initially size-assigned

before the pooling operation is executed. Several types of pooling methods exists

which include tree pooling, gated pooling, average pooling, min pooling, max

pooling, global average pooling (GAP), and global max pooling. The most frequently

utilized pooling methods are the max, min, and GAP pooling shown in the figure

below. Sometimes the overall CNN performance is decreased as a result of the

21

pooling layer which is the main shortfall of the pooling layer. The reason for the

decrease in performance is that the pooling layer helps the CNN to determine

whether or not a certain feature is available in the particular input image, but

focuses exclusively on ascertaining the correct location of that feature causing the

CNN model misses the relevant information [17].

Usually a fully connected (FC) layer is located at the end of a CNN architecture.

Inside a fully connected layer, each neuron is connected to all neurons of the

previous layer. It follows the basic method of the conventional neural network. The

input of the FC layer comes from the last pooling or convolutional layer. This input

is in the form of a vector, which is created from the feature maps after flattening.

The output of the FC layer represents the final CNN output and thus it is utilized as

the CNN classifier [17].

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are another commonly employed

architecture in deep learning and are mainly applied in the area of speech

processing and NLP contexts where sequencing of information is important [17].

The primary difference between a typical multilayer network and a recurrent

network is that rather than completely feed-forward connections, a recurrent

network might have connections that feed back into prior layers. This feedback

22

allows RNNs to maintain memory of past inputs and model problems in time [16].

Since the embedded structure in the sequence of the data delivers valuable

information, RNNs are fundamental to a range of different applications. For

example, it is important to understand the context of the sentence in order to

determine the meaning of a specific word in it. Thus, it is possible to consider the

RNN as a unit of short-term memory, where 𝑥 represents the input layer, 𝑦 is the

output layer, and 𝑠 represents the state (hidden) layer [17]. A typical unfolded RNN

diagram is illustrated below.

One of the main issues with RNNs are their sensitivity to the exploding

gradient and vanishing problems. During the training process, the reduplications of

several large or small derivatives may cause the gradients to exponentially explode

or decay [17].

3.2.1 Long Short-Term Memory Unit

The Long Short-Term Memory Unit (LSTM) was created in 1997 by Hochreiter

and Schimdhuber, and has grown in popularity in recent years as an RNN

23

architecture for various applications [16]. The LSTM introduced the concept of a

memory cell. A memory cell can retain its value for a short or long time as a function

of its inputs. This allows the cell to remember what's important and not just its last

computed value [16].

 The LSTM memory cell contains three gates that control when and how

information flows into or out of the cell. The input gate controls when new

information can flow into the cell. The forget gate controls when an existing piece

of information is forgotten. This allows more recent data to be considered by the

network over old data. Finally, the output gate controls when the information that

is contained in the cell will be used in the output from the cell. The cell also contains

weights which control each gate [16]. Shown below is a diagram of the memory cell

shown in the greater context of the RNN network.

3.3 Auto Encoder/Decoder

 The first known usage of Auto-Encoders (AEs) was found to be by LeCun in

1987 [16]. The central idea of AEs is to take some data of high dimension, represent

this data in a lower dimensional latent representation of the input, which is the role

of the encoder, and then up-sample the latent representation to try to most

accurately reconstruct the input which is the role of the decoder. The term Auto

Encoder is often used to describe an Auto Encoder/Decoder network; however, the

24

role of the encoder and decoder differ greatly. In this section we will further

contribute to the overloading of the term and refer to an Auto Encoder/Decoder as

an Auto Encoder or AE for short.

 In general, this variant of an ANN is composed of input, hidden, and output

layers. The input layer is encoded into the hidden layer using an appropriate

encoding function. The number of nodes in the hidden layer is much less than the

number of nodes in the input layer, creating a compressed or latent representation

of the original input. Lastly, the output layer aims to reconstruct the input layer by

using a decoder function.

 At first it may not make much sense as to why we would want to regenerate

the input; however, there are a few applications where this makes sense. Let’s say

we have an image that is blurry, and we would like to up-sample it to reduce the

noise. An Auto Encoder/Decoder can be used to recreate the image and the

decoder could be trained to up-sample the image. We can also use the decoder part

of the network in generative neural networks to create images from latent

representations of a piece of text which is used to describe the image to be

25

generated by the network. It is this last application which motivates our next section

on Generative Adversarial Networks.

3.4 Generative Neural Networks

The word "Generative" in Generative Neural Networks describes a class of

statistical models that contrasts with the discriminative models which we have

discussed in detail in sections prior. Informally, Generative models can generate

new data instances. More formally, given a set of data instances 𝑋 and a set of

labels 𝑌, Generative models capture the joint probability 𝑝(𝑋, 𝑌), or just 𝑝(𝑋) if

there are no labels [18].

A generative model for images might capture correlations like "things that

look like cars are probably going to appear near things that look like roads" and

"fingers are not likely to appear on feet." Both of these examples are very

complicated distributions. In contrast, a discriminative model might learn the

difference between "dog" or "not dog" by just learning from a few examples.

Discriminative models attempt to find boundaries in the data space, while

generative models try to model how data is placed throughout the space [18]. This

is illustrated well in the figure below.

26

3.4.1 Generative Adversarial Networks

A generative adversarial network (GAN) has two parts: the generator and the

discriminator. The generator learns to generate data which would be plausible in

the data domain. The discriminator learns to distinguish the generator's fake data

from real data. The discriminator penalizes the generator for producing implausible

results which is where term adversarial comes from [19].

When training begins, the generator is not very good at producing convincing

data so the discriminator can easily tell that it's fake [19].

 As training continues, the generator becomes better at generating

convincing data which is better able to fool the discriminator [19].

Finally, the generator becomes so good at generating convincing data that the

discriminator can no longer tell the fake from the real data [19].

A diagram of the system is shown below.

27

4 A Deep Dive into Transfer Learning with ResNet

Now that we have strong foundational knowledge of deep learning, let’s

discuss the final project. In this section we utilize a method called transfer learning

which allows us to transfer the knowledge from a pre-existing model to a new

model in order to extend that models classification ability.

4.1 Objective

The objective for this assignment was to utilize transfer learning with a model

called ResNet-50 and extend ResNet’s functionality to classify dog breeds. We then

tuned the network using various hyper parameter configurations. The data set for

this assignment can be found here.

4.2 Transfer Learning

Transfer learning is a machine learning method where a model developed for

a certain task is reused as the starting point for a model on a different task. It is a

popular approach in deep learning where pre-trained models are used as the

starting point given the vast compute and time resources required to develop

https://www.kaggle.com/c/dog-breed-identification

28

neural network models on certain problems and from the huge jumps in skill that

they provide on related problems [20].

Lisa Torrey and Jude Shavlik describe three possible benefits to look for when

using transfer learning. First, transfer learning enables a higher start meaning the

initial skill (before refining the model) on the source model is higher than it

otherwise would be. Second, transfer learning enables higher slope meaning the

rate of improvement of skill during training of the source model is steeper than it

otherwise would be. Lastly, transfer learning allows a higher asymptote meaning

the converged skill of the trained model is better than it otherwise would be [20].

4.3 ResNet

The first ResNet architecture was the Resnet-34 which involved the insertion

of shortcut connections in turning a plain network into its residual network

counterpart. The plain network was inspired by VGG neural with the convolutional

networks having 3×3 kernels. However, compared to VGGNets, ResNets have fewer

filters and lower complexity. While the input and output dimensions were the same

as VGG, the identity shortcuts were directly used [20].

29

The Resnet50 architecture is based on Resnet-34 with one major difference.

In Resnet50 the building block was modified into a bottleneck design and each of

the 2-layer blocks in Resnet34 was replaced with a 3-layer bottleneck block. This

resulted in a much higher accuracy than the previous 34-layer ResNet model [20].

4.4 Method

In this project, we used PyTorch which is a python-based machine learning

framework. Using PyTorch we are able to use a pre-trained ResNet50 model with

the following line of code.

resnet = models.resnet50(weights='ResNet50_Weights.DEFAULT')

 We kept the ResNet50 model the same by disabling gradients in the ResNet

layers while we trained our network to learn classification of dog breeds. This can

be seen in the following lines of code.

freeze all model parameters

for param in resnet.parameters():

 param.requires_grad = False

Next, we were able to create new Fully Connected layers at the end of the

model to perform the dog breed classification.

new final layer with classes

num_ftrs = resnet.fc.in_features

resnet.fc = torch.nn.Linear(num_ftrs, NUM_BREEDS)

 The training function, train_model, is the heart of the learning process

for our model. For each epoch we first conduct a training phase which calculates

the loss, performs back propagation, and finally updates the weights of the network

using optimizer.step(). Next, we conduct a validation phase where we only

30

evaluate the loss and do not update the network. The full code can be found in the

Appendix.

Once we had trained our first models, we began to vary the hyper parameters

of the network and record how well the model performed. Finally, then graphed

our model accuracy over multiple training epochs.

4.5 Findings

We found that using ResNet as our base model we were able to achieve a max

accuracy of 88.6%. The following table shows the best accuracy for various

configuration of hyperparameter values.

From this table we can see that we achieved the best results when the

hyperparameters of the network were equal to the first row. We tracked the

accuracy of the model during training and validation phases which can be seen

below.

31

From this chart we see that after two epochs the model starts to suffer from

over fitting, where the accuracy of the model on the training dataset surpasses

the accuracy of the model on the validation dataset. This is likely due to the large

number of weights contained within the ResNet architecture. We saw similar

results for the other configuration of hyper parameters shown in the table.

Though an accuracy of 88.7% could be considered an acceptable result, we

believe more work is needed to improve the accuracy of the model overall. We

believe that the ResNet model may have actually caused us to have relatively poor

results due to the images in the dataset containing people and other objects which

may have caused ResNet to classify that picture as a person rather than a dog.

Because of this concern we also created a small convolutional network so we could

compare the two.

32

4.6 Conclusion

Transfer Learning has become more popular in the field of Machine Learning

as networks with high levels of accuracy have become more popular. Used as a tool,

transfer learning allows you to build on top of a preexisting model, further

specializing the model for the task you aim to solve. We will utilize this technique in

our project to build a model which will successfully classify dog breeds. We utilize a

model called ResNet in order to solve our classification task. We found that using

ResNet as our base model we were able to achieve an accuracy of 88%. More work

is needed to tune the hyperparameters of our network to see if a better accuracy

can be realized. Also, more work is needed to compare this method to a more

traditional CNN.

33

Acknowledgement

I would like to thank Dr. Geng for his time and for advising me on this journey

to learn about deep learning. I’d also like to thank Dr. Johnstone for allowing me to

take this course from which I have benefitted greatly. I’d like to thank the University

of Alabama at Birmingham. I am eternally grateful for the people I have met,

mentors I have found, and the friendships I have made during my time at UAB. The

time I have spent in study with friends has lit ?

? passion within to pursue more, learn more, and strive to become better each day.

Lastly, I would like to thank my family, in particular my dad, Mike Wise. I would

not be here without you. I owe all I have to the way you have loved and supported

me.

34

References:

[1] A. Watters, “30+ artificial intelligence statistics; facts for 2022,” COMPTIA, 24-
Feb-2022. [Online]. Available: https://connect.comptia.org/blog/artificial-
intelligence-statistics-facts. [Accessed: 7-Nov-2022].

[2] P. Olson, “Nearly half of all 'ai startups' are cashing in on hype,” Forbes, 05-
Mar-2019. [Online]. Available:
https://www.forbes.com/sites/parmyolson/2019/03/04/nearly-half-of-all-ai-
startups-are-cashing-in-on-hype/?sh=6ce3b7f4d022. [Accessed: 7-Nov-
2022].

[3] J. M. Helm, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta, J. L. Schaffer, V. E.
Krebs, A. I. Spitzer, and P. N. Ramkumar, “Machine Learning and Artificial
Intelligence: Definitions, applications, and future directions,” Current
Reviews in Musculoskeletal Medicine, vol. 13, no. 1, pp. 69–76, 2020.

[4] F. ois Chollet, Deep Learning with Python, Second Edition, 2nd ed. Greenwich,
CT: Manning Publications, 2022.

[5] R. Anyoha, “The History of Artificial Intelligence,” Science in the News, 23-Apr-
2020. [Online]. Available: https://sitn.hms.harvard.edu/flash/2017/history-
artificial-intelligence/. [Accessed: 10-Nov-2022].

[6] G. E. Hinton, “How neural networks learn from experience,” Scientific
American, vol. 267, no. 3, pp. 144–151, 1992.

[7] J. DeLua, “Supervised vs. unsupervised learning: What's the difference?,” IBM.
[Online]. Available: https://www.ibm.com/cloud/blog/supervised-vs-
unsupervised-learning. [Accessed: 11-Nov-2022].

[8] Jenn, “Continuity and differentiability,” Calcworkshop, 22-Feb-2021. [Online].
Available: https://calcworkshop.com/derivatives/continuity-and-
differentiability/. [Accessed: 23-Nov-2022].

[9] IBM Cloud Education, “What is overfitting?,” IBM, 21-Mar-2021. [Online].
Available: https://www.ibm.com/cloud/learn/overfitting. [Accessed: 23-Nov-
2022].

[10] A. Gupta, “A comprehensive guide on Deep learning optimizers,” Analytics
Vidhya, 24-May-2022. [Online]. Available:
https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-
deep-learning-optimizers/. [Accessed: 23-Nov-2022].

[11] V. Jain, “Everything you need to know about ‘activation functions’ in Deep
learning models,” Medium, 30-Dec-2019. [Online]. Available:
https://towardsdatascience.com/everything-you-need-to-know-about-
activation-functions-in-deep-learning-models-84ba9f82c253. [Accessed: 23-
Nov-2022].

[12] C.-F. Wang, “The vanishing gradient problem,” Medium, 08-Jan-2019.
[Online]. Available: https://towardsdatascience.com/the-vanishing-gradient-
problem-69bf08b15484. [Accessed: 27-Nov-2022].

35

[13] I. Goodfellow, “Optimization for Training Deep Models,” in Deep Learning,
Cambridge, MA: MIT Press Ltd, 2017, pp. 301–302.

[14] J. Brownlee, “Weight initialization for deep learning neural networks,”
MachineLearningMastery.com, 07-Feb-2021. [Online]. Available:
https://machinelearningmastery.com/weight-initialization-for-deep-
learning-neural-networks/. [Accessed: 28-Nov-2022].

[15] J. Brownlee, “A gentle introduction to batch normalization for Deep Neural
Networks,” MachineLearningMastery.com, 03-Dec-2019. [Online]. Available:
https://machinelearningmastery.com/batch-normalization-for-training-of-
deep-neural-networks/. [Accessed: 28-Nov-2022].

[16] S. Madhavan and T. Jones, “Deep learning architectures,” IBM developer, 08-
Sep-2017. [Online]. Available: https://developer.ibm.com/articles/cc-
machine-learning-deep-learning-architectures/. [Accessed: 28-Nov-2022].

[17] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J.
Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of Deep
Learning: Concepts, CNN Architectures, challenges, applications, Future
Directions,” Journal of Big Data, vol. 8, no. 1, 2021.

[18] G. Developers, “Background: What is a generative model? ,” Google. [Online].
Available: https://developers.google.com/machine-learning/gan/generative.
[Accessed: 28-Nov-2022].

[19] G. Developers, “Overview of GAN Structure,” Google. [Online]. Available:
https://developers.google.com/machine-learning/gan/gan_structure.
[Accessed: 28-Nov-2022].

[20] J. Brownlee, “A gentle introduction to transfer learning for Deep learning,”
MachineLearningMastery.com, 16-Sep-2019. [Online]. Available:
https://machinelearningmastery.com/transfer-learning-for-deep-learning/.
[Accessed: 28-Nov-2022].

[21] G. Boesch, “Deep residual networks (ResNet, RESNET50) - 2022 guide,”
viso.ai, 22-Aug-2022. [Online]. Available: https://viso.ai/deep-
learning/resnet-residual-neural-network/. [Accessed: 28-Nov-2022].

36

Appendix

37

38

39

40

41

42

43

	Abstract
	1 Introduction
	1.1 A Brief History

	2 How Neural Networks Learn
	2.1 Loss Functions
	2.2 Optimizing the Network Using the Loss Function: Stochastic Gradient Descent and Backpropagation
	2.3 Optimizers
	2.4 Over Fitting
	2.5 Activation Functions
	2.6 Weight Initialization Schemes
	2.7 Batch Normalization

	3 Architectures
	3.1 Convolutional Neural Networks
	3.2 Recurrent Neural Networks
	3.2.1 Long Short-Term Memory Unit

	3.3 Auto Encoder/Decoder
	3.4 Generative Neural Networks
	3.4.1 Generative Adversarial Networks

	4 A Deep Dive into Transfer Learning with ResNet
	4.1 Objective
	4.2 Transfer Learning
	4.3 ResNet
	4.4 Method
	4.5 Findings
	4.6 Conclusion

	References:

