
9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM



9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM



9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency 
content of a signal. The frequencies are plotted on the x-axis and the 
relative output amplitudes of the frequencies on the y-axis. 
The phase response plots show the phase shift through the filter. The only 
difference in the two plots is the amount of phase shift that the various 
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a 
set of sinusoids with different frequencies and amplitudes (which is called 
Fourier decomposition). This means that any complex (meaning made up of 
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal 
waveforms which are added together. Therefore we can also recreate a 
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four 
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the 
components are shown as dark bars to the left of the y-axes. For simplicity, we have 
chosen the input signal as a combination of four sinusoids that have the same 
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting 
phases of zero degrees. We can observe the following: 

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes 
out of the filter with 
the same amplitude and phase shift as it had when it entered the filter. 

•

The three harmonics have decreasing amplitudes and more phase shift as 
they go higher in 
frequency. 

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to 
become the output y(n). The figure below shows a filter along with the 
values of the samples at the various nodes of the circuit. The input sample is 
x(n) and the output of the storage register marked z−1 is x(n − 1), which was 
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches 
feed-forward into the summer. The signal flows from input to output. There 
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test 
signals to the filter, then manually push the values through and see what 
comes out. For each audio sample that enters the structure, there are two 
phases to the operation:

• Process phase: the sample is read in and the output is formed using 
the difference equation and the previous sample in the delay register; 
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input 
value—the older sample stored in the single z−1 register is effectively 
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second 
phase is sometimes called the state update phase or more simply updating the 
state of the filter. The z−1 register itself is sometimes called the state register and we 
refer to it this way throughout the text. It is during this second phase of operation 
that we prepare the z−1 registers for the next processing iteration on the next 
sample period. It is important that we always update the filter’s state after the 
output y(n) has been calculated. This will become a rule for our filtering objects 
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we 
process the input x(n) into an output y(n) and then update the filter’s 
state by shifting the input value into the delay register, as shown in 
Figure 9.5b. Notice that we lose the value in the state register, 
symbolically sending it to the trash can, and overwriting it with the 
current input value. In complex filter structures with many state 
registers, we need to take care to ensure that the state registers are 
updated in the proper sequence so that only the oldest state 
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence:      {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .} 
Output sequence:   {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity 
gain condition, so at DC or 0 Hz, the output equals the input. 
However, there is a one-sample delay in the response causing the 
leading edge of the step input to be smeared out by one sample 
interval. This time smearing is a normal consequence of the filtering 
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the 
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory: 
the one-sample delay introduced exactly 180 degrees of phase shift at 
the Nyquist frequency and caused it to cancel out when re-combined 
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase 
shift depends on the amount of delay as well as the frequency of the 
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced 
amplitude and with a phase offset. 

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the 
input size, and that the one sample of time smearing results in a 
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the 
filter, we can now combine the frequency and amplitude observations for a 
frequency response plot and the frequency and phase angles for a phase 
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF 
frequency response. However the phase response is quite interesting: it is 
linear instead of nonlinear like the example at the beginning of the chapter. 
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a 
linear phase filter if its coefficients are symmetrical about their center. In 
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the 
closest we can get is an analog filter whose phase response is linear 
through the pass band, but then goes nonlinear in the stop band. 

1.

this kind of filter has useful applications where phase linearity across 
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse 
Response. The impulse response defines the filter in the time domain, 
like the frequency response defines it in the frequency domain. The 
basic idea is that if you know how the filter reacts to a single impulse 
you can predict how it will act to a series of impulses of varying 
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also 
notice that the two non-zero values in Table 9.3 are identical to our 
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another 
rule.

For a pure feed-forward filter, the impulse response is finite and 
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies: 
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that 
determine what the filter will do.

We can now make some important generalizations of our filters and think 
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency 
and phase responses and therefore its type (e.g. low-pass filter or 
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process 
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency, 
etc.) we must recalculate the filter coefficients accordingly so that the 
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two 
coefficients: a_0 in the forward path and b_0 in the feedback path. There is 
only one state register, but this time it is in the feedback path, and it stores 
previous filter outputs instead of previous filter input x(n-1). You can also 
see that there is no 𝑏! coefficient in this structure—and the fact is that we 
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through 
this structure and examining the output to determine the frequency and 
phase responses. But a little thought will show that this is going to become 
exceedingly tedious. This in itself is good motivation for us to find a better 
way to analyze and design these filters, even if it requires some heavier 
mathematical lifting on our parts. In the next chapter we will be covering 
the basic DSP theoretical framework which will allow us to start analyzing 
these effects mathematically. 

Examine the figure below which shows pairs of plots for frequency and 
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5 
to 0.9 to 1.0. Notice what happens to the impulse response as the value for 
the 𝑏" coefficient increases: you can see that it becomes a damped 
oscillation, which we never observed in the feed-forward filter. This is called 
ringing and has an audible effect that is referred to as ringing, or sometimes 
pinging.

9.5 Final Observations
Feed-Forward Filters 

operate by making some frequencies go to zero; in the case of 𝑎! = 
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a 
zero of transmission or a zero frequency or just a zero 

○

step (DC) and impulse responses show smearing (amount of smearing 
is exactly equal to the total amount of delay in the feed-forward 
branches) 

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse 
responses, though they may be smeared, are always finite in length 

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! = 
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case 
of 𝑎!  = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called 
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing 
depending on the coefficients (amount of ringing or smearing is 
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse 
responses can become infinitely long

○
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