
9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

9.1 Frequency and Phase Response Plots
The frequency response plot shows how a filter modifies the frequency
content of a signal. The frequencies are plotted on the x-axis and the
relative output amplitudes of the frequencies on the y-axis.
The phase response plots show the phase shift through the filter. The only
difference in the two plots is the amount of phase shift that the various
frequencies encounter when moving through the filter.

9.2 Frequency and Phase Adjustments from Filtering
Fourier showed that a continuous waveform could be decomposed into a
set of sinusoids with different frequencies and amplitudes (which is called
Fourier decomposition). This means that any complex (meaning made up of
multiple sinusoids) signals can be expressed as a sum of pure sinusoidal
waveforms which are added together. Therefore we can also recreate a
complex signal using its elemental sinusoidal signals called Fourier re-
synthesis.

"
[The figure below] shows a filter in action. The input is decomposed into four
sinusoids, a fundamental, and three harmonics. The peak-amplitudes of the
components are shown as dark bars to the left of the y-axes. For simplicity, we have
chosen the input signal as a combination of four sinusoids that have the same
amplitude, and that start at 0.0 at time t = 0, so that they have identical starting
phases of zero degrees. We can observe the following:

The input waveform is smoothed out and is less “bumpy.” •
The lowest frequency component (called the fundamental frequency) comes
out of the filter with
the same amplitude and phase shift as it had when it entered the filter.

•

The three harmonics have decreasing amplitudes and more phase shift as
they go higher in
frequency.

•

" (2019, pg. 179)

9.3 First Order Feed-Forward Filter
Let’s look at how an input signal x(n) would flow through the filter to
become the output y(n). The figure below shows a filter along with the
values of the samples at the various nodes of the circuit. The input sample is
x(n) and the output of the storage register marked z−1 is x(n − 1), which was
the previous input to the filter, one sample period prior to our observation.

The difference equation for this filter can be expressed as follows:
𝑦(𝑛) = 𝑎! ∗ 𝑥(𝑛) + 𝑎" ∗ 𝑥(𝑛 − 1)

You can tell why the structure is called feed-forward: the input branches
feed-forward into the summer. The signal flows from input to output. There
is no feedback from the output back to the input.

In order to figure out what this does, you apply the five basic digital test
signals to the filter, then manually push the values through and see what
comes out. For each audio sample that enters the structure, there are two
phases to the operation:

• Process phase: the sample is read in and the output is formed using
the difference equation and the previous sample in the delay register;
the input is processed through to the output.
• State update phase: the delay element is overwritten with the input
value—the older sample stored in the single z−1 register is effectively
lost.

"The value in a filter’s z−1 register is sometimes called its “state,” and the second
phase is sometimes called the state update phase or more simply updating the
state of the filter. The z−1 register itself is sometimes called the state register and we
refer to it this way throughout the text. It is during this second phase of operation
that we prepare the z−1 registers for the next processing iteration on the next
sample period. It is important that we always update the filter’s state after the
output y(n) has been calculated. This will become a rule for our filtering objects
later on. " (2019, pg. 182)

The five waveforms we want to test are:
DC (0 Hz)•
"Figure 9.5a shows the first iteration of the structure where we
process the input x(n) into an output y(n) and then update the filter’s
state by shifting the input value into the delay register, as shown in
Figure 9.5b. Notice that we lose the value in the state register,
symbolically sending it to the trash can, and overwriting it with the
current input value. In complex filter structures with many state
registers, we need to take care to ensure that the state registers are
updated in the proper sequence so that only the oldest state
information is ever lost or thrown away."

Continuing this process leads to the following:
Input sequence: {. . . 0.0, 1.0, 1.0, 1.0, 1.0 . . .}
Output sequence: {. . . 0.0, 0.5, 1.0, 1.0, 1.0 . . .}

The output amplitude eventually settles out to a constant 1.0 or unity
gain condition, so at DC or 0 Hz, the output equals the input.
However, there is a one-sample delay in the response causing the
leading edge of the step input to be smeared out by one sample
interval. This time smearing is a normal consequence of the filtering
and gives us our first rule for feed- forward filters.
In a feed-forward filter, the amount of time smearing is equal to the
maximum delayed path through the feed-forward branches.

Nyquist•
This time we will keep track of our tabulations in the following table.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
1 0 0.5

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

1 -1 0

-1 1 0

Why did the amplitude drop all the way to zero at Nyquist?
The answer is one of the keys to understanding digital filter theory:
the one-sample delay introduced exactly 180 degrees of phase shift at
the Nyquist frequency and caused it to cancel out when re-combined
with the input branch through 𝑎!. This leads us to our next rule.
Delay elements create phase shifts in the signal. The amount of phase
shift depends on the amount of delay as well as the frequency of the
input signal.

1⁄2 Nyquist•
𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)

0 0 0

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5

1 0 0.5

0 1 0.5

-1 0 -0.5

0 -1 -0.5
We observe that the output sequence is periodic, but with reduced
amplitude and with a phase offset.

1⁄4 Nyquist•

Here we can estimate that the output amplitude is about 90% of the
input size, and that the one sample of time smearing results in a
phase shift of 1/16 of a cycle, or 22.5 degrees.

Having analyzed all of the signals that impact the frequency domain of the
filter, we can now combine the frequency and amplitude observations for a
frequency response plot and the frequency and phase angles for a phase
response plot.

We observe that this digital filter is a low-pass variety with a typical LPF
frequency response. However the phase response is quite interesting: it is
linear instead of nonlinear like the example at the beginning of the chapter.
In fact, this simple filter is a linear phase filter. A feed-forward filter will be a
linear phase filter if its coefficients are symmetrical about their center. In
this case, (0.5, 0.5) is symmetrical.
These are interesting for two reasons:

this kind of response cannot be obtained from an analog filter; the
closest we can get is an analog filter whose phase response is linear
through the pass band, but then goes nonlinear in the stop band.

1.

this kind of filter has useful applications where phase linearity across
the spectrum is important, such as filters for loudspeaker crossovers.

2.

Impulse•
Applying the Impulse signal to the filter we will find the filters Impulse
Response. The impulse response defines the filter in the time domain,
like the frequency response defines it in the frequency domain. The
basic idea is that if you know how the filter reacts to a single impulse
you can predict how it will act to a series of impulses of varying
amplitudes.

𝑥(𝑛) 𝑥(𝑛 − 1) 𝑦(𝑛) = 0.5𝑥(𝑛) + 0.5𝑥(𝑛 − 1)
0 0 0

1 0 0.5

0 1 0.5

0 0 0

0 0 0

0 0 0

It is actually two points on a sin(x)/(x)-like curve. You might also
notice that the two non-zero values in Table 9.3 are identical to our
pair of filter coefficients: a0 and a1 = {0.5, 0.5}. This leads to another
rule.

For a pure feed-forward filter, the impulse response is finite and
consists a set of values that are identical to the filter coefficients.

What makes this filter a low-pass filter?
It is a combination of the coefficients and the filter topology (1st order feed-
forward).

There are three basic topologies:
Feed-forward (FF)○
Feedback (FB)○
a combination of FF/FB.○

So once the topology has been chosen, it’s really the coefficients that
determine what the filter will do.

We can now make some important generalizations of our filters and think
about what a plugin that implements filters would need to do:

The topology of the filter determines its difference equation.○
The coefficients of a feed-forward filter determine its filter frequency
and phase responses and therefore its type (e.g. low-pass filter or
LPF) and its sonic qualities.

○

A filtering plugin must implement the difference equation to process
input samples into output samples.

○

As the user adjusts the plugin controls (filter type, cutoff frequency,
etc.) we must recalculate the filter coefficients accordingly so that the
filter is adjusted properly.

○

9.4 1st Order Feedback Filter
The 1st order feedback filter is shown in Figure 9.15 and consists of two
coefficients: a_0 in the forward path and b_0 in the feedback path. There is
only one state register, but this time it is in the feedback path, and it stores
previous filter outputs instead of previous filter input x(n-1). You can also
see that there is no 𝑏! coefficient in this structure—and the fact is that we
will never have a b_0 coefficient. The difference equation for this filter is:

𝑦(𝑛) = 𝑎!𝑥(𝑛) − 𝑏"𝑦(𝑛 − 1)

We can apply the same concept of pushing analytical sequences through
this structure and examining the output to determine the frequency and
phase responses. But a little thought will show that this is going to become
exceedingly tedious. This in itself is good motivation for us to find a better
way to analyze and design these filters, even if it requires some heavier
mathematical lifting on our parts. In the next chapter we will be covering
the basic DSP theoretical framework which will allow us to start analyzing
these effects mathematically.

Examine the figure below which shows pairs of plots for frequency and
impulse responses of this 1st order feedback structure. In each case, the 𝑎!
coefficient is held constant at 0.5, and the 𝑏" coefficient is varied from 0.5
to 0.9 to 1.0. Notice what happens to the impulse response as the value for
the 𝑏" coefficient increases: you can see that it becomes a damped
oscillation, which we never observed in the feed-forward filter. This is called
ringing and has an audible effect that is referred to as ringing, or sometimes
pinging.

9.5 Final Observations
Feed-Forward Filters

operate by making some frequencies go to zero; in the case of 𝑎! =
1.0 and 𝑎" = 1.0, the Nyquist frequency went to zero; this is called a
zero of transmission or a zero frequency or just a zero

○

step (DC) and impulse responses show smearing (amount of smearing
is exactly equal to the total amount of delay in the feed-forward
branches)

○

don’t blow up ○
are called finite impulse response (FIR) filters because their impulse
responses, though they may be smeared, are always finite in length

○

Feedback Filters
operate by making some frequencies go to infinity; in the case of 𝑎! =
0.5 and 𝑏" = 1.0, the Nyquist frequency went to infinity but in the case
of 𝑎! = 0.5 and 𝑏" = −1.0, the DC or 0 Hz went to infinity; this is called
a pole of transmission or a pole frequency or just a pole

○

step and impulse responses show overshoot and ringing or smearing
depending on the coefficients (amount of ringing or smearing is
proportional to the amount of feedback)

○

can blow up (or go unstable) under some conditions○
are called infinite impulse response (IIR) filters because their impulse
responses can become infinitely long

○

DSP in C++: 9 - How DSP Filters Work
Thursday, July 14, 2022 9:27 PM

